Although deep convolutional neutral networks (CNNs) have significantly enhanced performance in image edge detection (ED), current models remain highly dependent on post-processing techniques such as non-maximum suppression (NMS), and often fail to deliver satisfactory perceptual results, while the performance will deteriorate significantly if the allowed error toleration distance decreases. These limitations arise from the uniform fusion of features across all pixels, regardless of their specific characteristics, such as the distinction between textural and edge areas. If the features extracted by the ED models are selected more meticulously and encompass greater diversity, the resulting predictions are expected to be more accurate and perceptually meaningful. Motivated by this observation, this paper proposes a novel feature selection paradigm for deep networks that facilitates the differential selection of features and can be seamlessly integrated into existing ED models. By incorporating this additional structure, the performance of conventional ED models is substantially enhanced without post-processing, while simultaneously enhancing the perceptual quality of the predictions. Extensive experimental evaluations validate the effectiveness of the proposed model.