Time series analysis has found widespread applications in areas such as weather forecasting, anomaly detection, and healthcare. However, real-world sequential data often exhibit a superimposed state of various fluctuation patterns, including hourly, daily, and monthly frequencies. Traditional decomposition techniques struggle to effectively disentangle these multiple fluctuation patterns from the seasonal components, making time series analysis challenging. Surpassing the existing multi-period decoupling paradigms, this paper introduces a novel perspective based on energy distribution within the temporal-spectrum space. By adaptively quantifying observed sequences into continuous frequency band intervals, the proposed approach reconstructs fluctuation patterns across diverse periods without relying on domain-specific prior knowledge. Building upon this innovative strategy, we propose Pets, an enhanced architecture that is adaptable to arbitrary model structures. Pets integrates a Fluctuation Pattern Assisted (FPA) module and a Context-Guided Mixture of Predictors (MoP). The FPA module facilitates information fusion among diverse fluctuation patterns by capturing their dependencies and progressively modeling these patterns as latent representations at each layer. Meanwhile, the MoP module leverages these compound pattern representations to guide and regulate the reconstruction of distinct fluctuations hierarchically. Pets achieves state-of-the-art performance across various tasks, including forecasting, imputation, anomaly detection, and classification, while demonstrating strong generalization and robustness.