We will report our efforts in designing feedback for the thruster-assisted walking of a bipedal robot. We will assume for well-tuned supervisory controllers and will focus on fine-tuning the desired joint trajectories to satisfy the performance being sought. In doing this, we will devise an intermediary filter based on the emerging idea of reference governors. Since these modifications and impact events lead to deviations from the desired periodic orbits, we will guarantee hybrid invariance in a robust fashion by applying predictive schemes within a short time envelope during the double support phase of a gait cycle. To achieve the hybrid invariance, we will leverage the unique features in our robot, i.e., the thruster.