i.ni.d.) $\alpha$-$\mu$ fading channels with a statistical model for misalignment errors in the THz wireless link. We use the derived statistical results to develop analytical expressions of the outage probability, average bit error rate (BER), and ergodic capacity for the performance assessment of the considered system. We develop diversity order of the system using asymptotic analysis in the high SNR region, demonstrating the scaling of system performance with the number of antennas. We use computer simulations to show the effect of system and channel parameters on the performance of the hybrid THz-RF link with multi-antenna diversity schemes.
Recent studies investigate single-antenna radio frequency (RF) systems mixed with terahertz (THz) wireless communications. This paper considers a two-tier system of THz for backhaul and multiple-antenna assisted RF for the access network. We analyze the system performance by employing both selection combining (SC) and maximal ratio combining (MRC) receivers for the RF link integrated with the THz using the fixed-gain amplify and forward (AF) protocol. We develop the probability density function (PDF) and cumulative distribution function (CDF) of the end-to-end signal-to-noise (SNR) of the dual-hop system over independent and non-identically distributed (