Imperfect information games, such as Bridge and Skat, present challenges due to state-space explosion and hidden information, posing formidable obstacles for search algorithms. Determinization-based algorithms offer a resolution by sampling hidden information and solving the game in a perfect information setting, facilitating rapid and effective action estimation. However, transitioning to perfect information introduces challenges, notably one called strategy fusion.This research introduces `Extended Perfect Information Monte Carlo' (EPIMC), an online algorithm inspired by the state-of-the-art determinization-based approach Perfect Information Monte Carlo (PIMC). EPIMC enhances the capabilities of PIMC by postponing the perfect information resolution, reducing alleviating issues related to strategy fusion. However, the decision to postpone the leaf evaluator introduces novel considerations, such as the interplay between prior levels of reasoning and the newly deferred resolution. In our empirical analysis, we investigate the performance of EPIMC across a range of games, with a particular focus on those characterized by varying degrees of strategy fusion. Our results demonstrate notable performance enhancements, particularly in games where strategy fusion significantly impacts gameplay. Furthermore, our research contributes to the theoretical foundation of determinization-based algorithms addressing challenges associated with strategy fusion.%, thereby enhancing our understanding of these algorithms within the context of imperfect information game scenarios.