Despite several attempts, the fundamental mechanisms behind the success of deep neural networks still remain elusive. To this end, we introduce a novel analytic framework to unveil hidden convexity in training deep neural networks. We consider a parallel architecture with multiple ReLU sub-networks, which includes many standard deep architectures and ResNets as its special cases. We then show that the training problem with path regularization can be cast as a single convex optimization problem in a high-dimensional space. We further prove that the equivalent convex program is regularized via a group sparsity inducing norm. Thus, a path regularized parallel architecture with ReLU sub-networks can be viewed as a parsimonious feature selection method in high-dimensions. More importantly, we show that the computational complexity required to globally optimize the equivalent convex problem is polynomial-time with respect to the number of data samples and feature dimension. Therefore, we prove exact polynomial-time trainability for path regularized deep ReLU networks with global optimality guarantees. We also provide several numerical experiments corroborating our theory.