In this paper, a fine-tuning method of the parameters in the MMG model for the real-scale ship is proposed. In the proposed method, all of the arbitrarily indicated target parameters of the MMG model are tuned simultaneously in the framework of SI using time series data of real-sale ship maneuvering motion data to steadily improve the accuracy of the MMG model. Parameter tuning is formulated as a minimization problem of the deviation of the maneuvering motion simulated with given parameters and the real-scale ship trials, and the global solution is explored using CMA-ES. By constraining the exploration ranges to the neighborhood of the previously determined parameter values, the proposed method limits the output in a realistic range. The proposed method is applied to the tuning of 12 parameters for a container ship with five different widths of the exploration range. The results show that, in all cases, the accuracy of the maneuvering simulation is improved by applying the tuned parameters to the MMG model, and the validity of the proposed parameter fine-tuning method is confirmed.