Regularized pairwise ranking with Gaussian kernels is one of the cutting-edge learning algorithms. Despite a wide range of applications, a rigorous theoretical demonstration still lacks to support the performance of such ranking estimators. This work aims to fill this gap by developing novel oracle inequalities for regularized pairwise ranking. With the help of these oracle inequalities, we derive fast learning rates of Gaussian ranking estimators under a general box-counting dimension assumption on the input domain combined with the noise conditions or the standard smoothness condition. Our theoretical analysis improves the existing estimates and shows that a low intrinsic dimension of input space can help the rates circumvent the curse of dimensionality.