Image classifiers are typically scored on their test set accuracy, but high accuracy can mask a subtle type of model failure. We find that high scoring convolutional neural networks (CNN) exhibit troubling pathologies that allow them to display high accuracy even in the absence of semantically salient features. When a model provides a high-confidence decision without salient supporting input features we say that the classifier has overinterpreted its input, finding too much class-evidence in patterns that appear nonsensical to humans. Here, we demonstrate that state of the art neural networks for CIFAR-10 and ImageNet suffer from overinterpretation, and find CIFAR-10 trained models make confident predictions even when 95% of an input image has been masked and humans are unable to discern salient features in the remaining pixel subset. Although these patterns portend potential model fragility in real-world deployment, they are in fact valid statistical patterns of the image classification benchmark that alone suffice to attain high test accuracy. We find that ensembling strategies can help mitigate model overinterpretation, and classifiers which rely on more semantically meaningful features can improve accuracy over both the test set and out-of-distribution images from a different source than the training data.