In popular usage, Data Gravity refers to the ability of a body of data to attract applications, services and other data. In this work we introduce a broader concept, "Digital Gravity" which includes not just data, but other elements of the AI/ML workflow. This concept is born out of our recent experiences in developing and deploying an AI-based decision support platform intended for use in a public health context. In addition to data, examples of additional considerations are compute (infrastructure and software), DevSecOps (personnel and practices), algorithms/programs, control planes, middleware (considered separately from programs), and even companies/service providers. We discuss the impact of Digital Gravity on the pathway to adoption and suggest preliminary approaches to conceptualize and mitigate the friction caused by it.