In this paper, we investigate the outage performance of an intelligent reflecting surface (IRS)-assisted non-orthogonal multiple access (NOMA) uplink, in which a group of the surface reflecting elements are configured to boost the signal of one of the user equipments (UEs), while the remaining elements are used to boost the other UE. By approximating the received powers as Gamma random variables, tractable expressions for the outage probability under NOMA interference cancellation are obtained. We evaluate the outage over different splits of the elements and varying pathloss differences between the two UEs. The analysis shows that for small pathloss differences, the split should be chosen such that most of the IRS elements are configured to boost the stronger UE, while for large pathloss differences, it is more beneficial to boost the weaker UE. Finally, we investigate a robust selection of the elements' split under the criterion of minimizing the maximum outage between the two UEs.