This article introduces an enhanced particle swarm optimizer (PSO), termed Orthogonal PSO with Mutation (OPSO-m). Initially, it proposes an orthogonal array-based learning approach to cultivate an improved initial swarm for PSO, significantly boosting the adaptability of swarm-based optimization algorithms. The article further presents archive-based self-adaptive learning strategies, dividing the population into regular and elite subgroups. Each subgroup employs distinct learning mechanisms. The regular group utilizes efficient learning schemes derived from three unique archives, which categorize individuals based on their quality levels. Additionally, a mutation strategy is implemented to update the positions of elite individuals. Comparative studies are conducted to assess the effectiveness of these learning strategies in OPSO-m, evaluating its optimization capacity through exploration-exploitation dynamics and population diversity analysis. The proposed OPSO-m model is tested on real-parameter challenges from the CEC 2017 suite in 10, 30, 50, and 100-dimensional search spaces, with its results compared to contemporary state-of-the-art algorithms using a sensitivity metric. OPSO-m exhibits distinguished performance in the precision of solutions, rapidity of convergence, efficiency in search, and robust stability, thus highlighting its superior aptitude for resolving intricate optimization issues.