Atrial fibrillation (AF) is a common cardiac arrhythmia characterized by rapid and irregular contractions of the atria. It significantly elevates the risk of strokes due to slowed blood flow in the atria, especially in the left atrial appendage, which is prone to blood clot formation. Such clots can migrate into cerebral arteries, leading to ischemic stroke. To assess whether AF patients should be prescribed anticoagulants, doctors often use the CHA2DS2-VASc scoring system. However, anticoagulant use must be approached with caution as it can impact clotting functions. This study introduces a machine learning algorithm that predicts whether patients with AF should be recommended anticoagulant therapy using 12-lead ECG data. In this model, we use STOME to enhance time-series data and then process it through a Convolutional Neural Network (CNN). By incorporating a path development layer, the model achieves a specificity of 30.6% under the condition of an NPV of 1. In contrast, LSTM algorithms without path development yield a specificity of only 2.7% under the same NPV condition.