We propose a new method for optimistic planning in infinite-horizon discounted Markov decision processes based on the idea of adding regularization to the updates of an otherwise standard approximate value iteration procedure. This technique allows us to avoid contraction and monotonicity arguments that are typically required by existing analyses of approximate dynamic programming methods, and in particular to use approximate transition functions estimated via least-squares procedures in MDPs with linear function approximation. We use our method to provide a computationally efficient algorithm for learning near-optimal policies in discounted linear kernel MDPs from a single stream of experience, and show that it achieves near-optimal statistical guarantees.