https://github.com/Julian-Wyatt/OptimisingfortheUnknown.
Cephalometric Landmark Detection is the process of identifying key areas for cephalometry. Each landmark is a single GT point labelled by a clinician. A machine learning model predicts the probability locus of a landmark represented by a heatmap. This work, for the 2024 CL-Detection MICCAI Challenge, proposes a domain alignment strategy with a regional facial extraction module and an X-ray artefact augmentation procedure. The challenge ranks our method's results as the best in MRE of 1.186mm and third in the 2mm SDR of 82.04% on the online validation leaderboard. The code is available at