Multi-distribution learning (MDL), which seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions, has emerged as a unified framework in response to the evolving demand for robustness, fairness, multi-group collaboration, etc. Achieving data-efficient MDL necessitates adaptive sampling, also called on-demand sampling, throughout the learning process. However, there exist substantial gaps between the state-of-the-art upper and lower bounds on the optimal sample complexity. Focusing on a hypothesis class of Vapnik-Chervonenkis (VC) dimension $d$, we propose a novel algorithm that yields an $varepsilon$-optimal randomized hypothesis with a sample complexity on the order of $(d+k)/\varepsilon^2$ (modulo some logarithmic factor), matching the best-known lower bound. Our algorithmic ideas and theory have been further extended to accommodate Rademacher classes. The proposed algorithms are oracle-efficient, which access the hypothesis class solely through an empirical risk minimization oracle. Additionally, we establish the necessity of randomization, unveiling a large sample size barrier when only deterministic hypotheses are permitted. These findings successfully resolve three open problems presented in COLT 2023 (i.e., Awasthi et al., (2023, Problem 1, 3 and 4)).