This paper considers the fusion of multiple estimates of a spatially extended object, where the object extent is modeled as an ellipse that is parameterized by the orientation and semi-axes lengths. For this purpose, we propose a novel systematic approach that employs a distance measure for ellipses, i.e., the Gaussian Wasserstein distance, as a cost function. We derive an explicit expression for the Minimium Mean Gaussian Wasserstein distance (MMGW) estimate. Based on the concept of a MMGW estimator, we develop efficient methods for the fusion of extended target estimates. The proposed fusion methods are evaluated in a simulated experiment and the benefits of the novel methods are discussed.