In the last few years there has been a growing interest in Human Activity Recognition~(HAR) topic. Sensor-based HAR approaches, in particular, has been gaining more popularity owing to their privacy preserving nature. Furthermore, due to the widespread accessibility of the internet, a broad range of streaming-based applications such as online HAR, has emerged over the past decades. However, proposing sufficiently robust online activity recognition approach in smart environment setting is still considered as a remarkable challenge. This paper presents a novel online application of Hierarchical Hidden Markov Model in order to detect the current activity on the live streaming of sensor events. Our method consists of two phases. In the first phase, data stream is segmented based on the beginning and ending of the activity patterns. Also, on-going activity is reported with every receiving observation. This phase is implemented using Hierarchical Hidden Markov models. The second phase is devoted to the correction of the provided label for the segmented data stream based on statistical features. The proposed model can also discover the activities that happen during another activity - so-called interrupted activities. After detecting the activity pane, the predicted label will be corrected utilizing statistical features such as time of day at which the activity happened and the duration of the activity. We validated our proposed method by testing it against two different smart home datasets and demonstrated its effectiveness, which is competing with the state-of-the-art methods.