The inherent uncertainty of dynamic environments poses significant challenges for modeling robot behavior, particularly in tasks such as collision avoidance. This paper presents an online controller synthesis framework tailored for robots equipped with deep learning-based perception components, with a focus on addressing distribution shifts. Our approach integrates periodic monitoring and repair mechanisms for the deep neural network perception component, followed by uncertainty reassessment. These uncertainty evaluations are injected into a parametric discrete-time markov chain, enabling the synthesis of robust controllers via probabilistic model checking. To ensure high system availability during the repair process, we propose a dual-component configuration that seamlessly transitions between operational states. Through a case study on robot collision avoidance, we demonstrate the efficacy of our method, showcasing substantial performance improvements over baseline approaches. This work provides a comprehensive and scalable solution for enhancing the safety and reliability of autonomous systems operating in uncertain environments.