Exchange algorithm is one of the most popular extensions of Metropolis-Hastings algorithm to sample from doubly-intractable distributions. However, theoretical exploration of exchange algorithm is very limited. For example, natural questions like `Does exchange algorithm converge at a geometric rate?' or `Does the exchange algorithm admit a Central Limit Theorem?' have not been answered. In this paper, we study the theoretical properties of exchange algorithm, in terms of asymptotic variance and convergence speed. We compare the exchange algorithm with the original Metropolis-Hastings algorithm and provide both necessary and sufficient conditions for geometric ergodicity of the exchange algorithm, which can be applied to various practical applications such as exponential random graph models and Ising models. A central limit theorem for the exchange algorithm is also established. Meanwhile, a concrete example, involving the Beta-Binomial model, is treated in detail with sharp convergence rates. Our results justify the theoretical usefulness of the exchange algorithm.