Interplanetary links (IPL) serve as crucial enablers for space exploration, facilitating secure and adaptable space missions. An integrated IPL with inter-satellite communication (IP-ISL) establishes a unified deep space network, expanding coverage and reducing atmospheric losses. The challenges, including irregularities in charged density, hardware impairments, and hidden celestial body brightness are analyzed with a reflectarray-based IP-ISL between Earth and Moon orbiters. It is observed that $10^{-8}$ order severe hardware impairments with intense solar plasma density drops an ideal system's spectral efficiency (SE) from $\sim\!38~\textrm{(bit/s)/Hz}$ down to $0~\textrm{(bit/s)/Hz}$. An ideal full angle of arrival fluctuation recovery with full steering range achieves $\sim\!20~\textrm{(bit/s)/Hz}$ gain and a limited beamsteering with a numerical reflectarray design achieves at least $\sim\!1~\textrm{(bit/s)/Hz}$ gain in severe hardware impairment cases.