This paper studies the global convergence of gradient descent for deep ReLU networks under the square loss. For this setting, the current state-of-the-art results show that gradient descent converges to a global optimum if the widths of all the hidden layers scale at least as $\Omega(N^8)$ ($N$ being the number of training samples). In this paper, we discuss a simple proof framework which allows us to improve the existing over-parameterization condition to linear, quadratic and cubic widths (depending on the type of initialization scheme and/or the depth of the network).