In-hand manipulation of tools using dexterous hands in real-world is an underexplored problem in the literature. In addition to more complex geometry and larger size of the tools compared to more commonly used objects like cubes or cylinders, task oriented in-hand tool manipulation involves many sub-tasks to be performed sequentially. This may involve reaching to the tool, picking it up, reorienting it in hand with or without regrasping to reach to a desired final grasp appropriate for the tool usage, and carrying the tool to the desired pose. Research on long-horizon manipulation using dexterous hands is rather limited and the existing work focus on learning the individual sub-tasks using a method like reinforcement learning (RL) and combine the policies for different subtasks to perform a long horizon task. However, in general a single method may not be the best for all the sub-tasks, and this can be more pronounced when dealing with multi-fingered hands manipulating objects with complex geometry like tools. In this paper, we investigate the use of a mixed-method approach to solve for the long-horizon task of tool usage and we use imitation learning, reinforcement learning and model based control. We also discuss a new RL-based teacher-student framework that combines real world data into offline training. We show that our proposed approach for each subtask outperforms the commonly adopted reinforcement learning approach across different subtasks and in performing the long horizon task in simulation. Finally we show the successful transferability to real world.