Recent works on joint communication and sensing (JCAS) cellular networks have proposed to use time division mode (TDM) and concurrent mode (CM), as alternative methods for sharing the resources between communication and sensing signals. While the performance of these JCAS schemes for object tracking and parameter estimation has been studied in previous works, their performance on target detection in the presence of clutter has not been analyzed. In this paper, we propose a detection scheme for estimating the number of targets in JCAS cellular networks that employ TDM or CM resource sharing. The proposed detection method allows for the presence of clutter and/or temporally correlated noise. This scheme is studied with respect to the JCAS trade-off parameters that allow to control the time slots in TDM and the power resources in CM allocated to sensing and communications. The performance of two fundamental transmit beamforming schemes, typical for JCAS, is compared in terms of the receiver operating characteristics curves. Our results indicate that in general the TDM scheme gives a somewhat better detection performance compared to the CM scheme, although both schemes outperform existing approaches provided that their respective trade-off parameters are tuned properly.