This short paper concerns discretization schemes for representing and computing approximate Nash equilibria, with emphasis on graphical games, but briefly touching on normal-form and poly-matrix games. The main technical contribution is a representation theorem that informally states that to account for every exact Nash equilibrium using a nearby approximate Nash equilibrium on a grid over mixed strategies, a uniform discretization size linear on the inverse of the approximation quality and natural game-representation parameters suffices. For graphical games, under natural conditions, the discretization is logarithmic in the game-representation size, a substantial improvement over the linear dependency previously required. The paper has five other objectives: (1) given the venue, to highlight the important, but often ignored, role that work on constraint networks in AI has in simplifying the derivation and analysis of algorithms for computing approximate Nash equilibria; (2) to summarize the state-of-the-art on computing approximate Nash equilibria, with emphasis on relevance to graphical games; (3) to help clarify the distinction between sparse-discretization and sparse-support techniques; (4) to illustrate and advocate for the deliberate mathematical simplicity of the formal proof of the representation theorem; and (5) to list and discuss important open problems, emphasizing graphical-game generalizations, which the AI community is most suitable to solve.