We process a large corpus of game records of the board game of Go and propose a way of extracting summary information on played moves. We then apply several basic data-mining methods on the summary information to identify the most differentiating features within the summary information, and discuss their correspondence with traditional Go knowledge. We show statistically significant mappings of the features to player attributes such as playing strength or informally perceived "playing style" (e.g. territoriality or aggressivity), describe accurate classifiers for these attributes, and propose applications including seeding real-work ranks of internet players, aiding in Go study and tuning of Go-playing programs, or contribution to Go-theoretical discussion on the scope of "playing style".