Traffic signal control is an important problem in urban mobility with a significant potential of economic and environmental impact. While there is a growing interest in Reinforcement Learning (RL) for traffic control, the work so far has focussed on learning through interactions which, in practice, is costly. Instead, real experience data on traffic is available and could be exploited at minimal costs. Recent progress in offline or batch RL has enabled just that. Model-based offline RL methods, in particular, have been shown to generalize to the experience data much better than others. We build a model-based learning framework, A-DAC, which infers a Markov Decision Process (MDP) from dataset with pessimistic costs built in to deal with data uncertainties. The costs are modeled through an adaptive shaping of rewards in the MDP which provides better regularization of data compared to the prior related work. A-DAC is evaluated on a complex signalized roundabout using multiple datasets varying in size and in batch collection policy. The evaluation results show that it is possible to build high performance control policies in a data efficient manner using simplistic batch collection policies.