The rapid advancements in generative models, particularly diffusion-based techniques, have revolutionized image inpainting tasks by enabling the generation of high-fidelity and diverse content. However, object removal remains under-explored as a specific subset of inpainting, facing challenges such as inadequate semantic understanding and the unintended generation of artifacts. Existing datasets for object removal often rely on synthetic data, which fails to align with real-world scenarios, limiting model performance. Although some real-world datasets address these issues partially, they suffer from scalability, annotation inefficiencies, and limited realism in physical phenomena such as lighting and shadows. To address these limitations, this paper introduces a novel approach to object removal by constructing a high-resolution real-world dataset through long-duration video capture with fixed camera settings. Leveraging advanced tools such as Grounding-DINO, Segment-Anything-Model, and MASA for automated annotation, we provides image, background, and mask pairs while significantly reducing annotation time and labor. With our efficient annotation pipeline, we release the first fully open, high-resolution real-world dataset for object removal, and improved performance in object removal tasks through fine-tuning of pre-trained diffusion models.