Recent copyright agreements between AI companies and content creators have highlighted the need for precise control over language models' ability to reproduce copyrighted content. While existing approaches rely on either complete concept removal through unlearning or simple output filtering, we propose Obliviate, a novel post-training technique that selectively prevents verbatim reproduction of specific text while preserving semantic understanding. Obliviate operates by selecting tokens within memorized sequences and modifying the model's probability distribution to prevent exact reproduction while maintaining contextual understanding. We evaluate Obliviate on multiple large language models (LLaMA-3.1 8B, LLaMA-3.1-instruct 8B, Qwen-2.5-7B, and Yi-1.5 6B) across both synthetic memorization tasks and organic copyright content. Our results demonstrate that Obliviate achieves orders of magnitude reduction, e.g., 100x, in verbatim memorization while maintaining model performance within 1% of baseline on standard benchmarks (HellaSwag, MMLU, TruthfulQA, and Winogrande). This makes Obliviate particularly suitable for practical deployment scenarios where companies need to efficiently address copyright concerns in pretrained models without compromising their general capabilities.