In this paper, we propose an approach for synthesizing novel view images from a single RGBD (Red Green Blue-Depth) input. Novel view synthesis (NVS) is an interesting computer vision task with extensive applications. Methods using multiple images has been well-studied, exemplary ones include training scene-specific Neural Radiance Fields (NeRF), or leveraging multi-view stereo (MVS) and 3D rendering pipelines. However, both are either computationally intensive or non-generalizable across different scenes, limiting their practical value. Conversely, the depth information embedded in RGBD images unlocks 3D potential from a singular view, simplifying NVS. The widespread availability of compact, affordable stereo cameras, and even LiDARs in contemporary devices like smartphones, makes capturing RGBD images more accessible than ever. In our method, we convert an RGBD image into a point cloud and render it from a different viewpoint, then formulate the NVS task into an image translation problem. We leveraged generative adversarial networks to style-transfer the rendered image, achieving a result similar to a photograph taken from the new perspective. We explore both unsupervised learning using CycleGAN and supervised learning with Pix2Pix, and demonstrate the qualitative results. Our method circumvents the limitations of traditional multi-image techniques, holding significant promise for practical, real-time applications in NVS.