Multimodality and multichannel monitoring have become increasingly popular and accessible in engineering, Internet of Things, wearable devices, and biomedical applications. In these contexts, given the diverse and complex nature of data modalities, the relevance of sensor fusion and sensor selection is heightened. In this note, we study the problem of channel/modality selection and fusion from an information theoretical perspective, focusing on linear and nonlinear signal mixtures corrupted by additive Gaussian noise. We revisit and extend well-known properties of linear noisy data models in estimation and information theory, providing practical insights that assist in the decision-making process between channel (modality) selection and fusion. Using the notion of multichannel signal-to-noise ratio, we derive conditions under which, selection or fusion of multimodal/multichannel data can be beneficial or redundant. This contributes to a better understanding of how to optimize sensor fusion and selection from a theoretical standpoint, aiming to enhance multimodal/multichannel system design, especially for biomedical multichannel/multimodal applications.