Extremely large aperture arrays (ELAAs) and reconfigurable intelligent surfaces (RISs) are candidate enablers to realize connectivity goals for the sixth-generation (6G) wireless networks. For instance, ELAAs can provide orders-of-magnitude higher area throughput compared to what massive multiple-input multiple-output (MIMO) can deliver through spatial multiplexing, while RISs can improve the propagation conditions over wireless channels but a passively reflecting RIS must be large to be effective. Active RIS with amplifiers can deal with this issue. In this paper, we study the distortion created by nonlinear amplifiers in both ELAAs and active RIS. We analytically obtain the angular directions and depth of the nonlinear distortion in both near- and far-field channels. The results are demonstrated numerically and we conclude that non-linearities can both create in-band and out-of-band distortion that is beamformed in entirely new directions and distances from the transmitter.