Graph data, also known as complex network data, is omnipresent across various domains and applications. Prior graph neural network models primarily focused on extracting task-specific structural features through supervised learning objectives, but they fell short in capturing the inherent semantic and structural features of the entire graph. In this paper, we introduce the semantic-structural attention-enhanced graph convolutional network (SSA-GCN), which not only models the graph structure but also extracts generalized unsupervised features to enhance vertex classification performance. The SSA-GCN's key contributions lie in three aspects: firstly, it derives semantic information through unsupervised feature extraction from a knowledge graph perspective; secondly, it obtains structural information through unsupervised feature extraction from a complex network perspective; and finally, it integrates these features through a cross-attention mechanism. By leveraging these features, we augment the graph convolutional network, thereby enhancing the model's generalization capabilities. Our experiments on the Cora and CiteSeer datasets demonstrate the performance improvements achieved by our proposed method. Furthermore, our approach also exhibits excellent accuracy under privacy settings, making it a robust and effective solution for graph data analysis.