Neuromorphic sampling is a bioinspired and opportunistic analog-to-digital conversion technique, where the measurements are recorded only when there is a significant change in the signal amplitude. Neuromorphic sampling has paved the way for a new class of vision sensors called event cameras or dynamic vision sensors (DVS), which consume low power, accommodate a high-dynamic range, and provide sparse measurements with high temporal resolution making it convenient for downstream inference tasks. In this paper, we consider neuromorphic sensing of signals with a finite rate of innovation (FRI), including a stream of Dirac impulses, sum of weighted and time-shifted pulses, and piecewise-polynomial functions. We consider a sampling-theoretic approach and leverage the close connection between neuromorphic sensing and time-based sampling, where the measurements are encoded temporally. Using Fourier-domain analysis, we show that perfect signal reconstruction is possible via parameter estimation using high-resolution spectral estimation methods. We develop a kernel-based sampling approach, which allows for perfect reconstruction with a sample complexity equal to the rate of innovation of the signal. We provide sufficient conditions on the parameters of the neuromorphic encoder for perfect reconstruction. Furthermore, we extend the analysis to multichannel neuromorphic sampling of FRI signals, in the single-input multi-output (SIMO) and multi-input multi-output (MIMO) configurations. We show that the signal parameters can be jointly estimated using multichannel measurements. Experimental results are provided to substantiate the theoretical claims.