To deepen our understanding of optical astronomy, we must advance imaging technology to overcome conventional frame-based cameras' limited dynamic range and temporal resolution. Our Perspective paper examines how neuromorphic cameras can effectively address these challenges. Drawing inspiration from the human retina, neuromorphic cameras excel in speed and high dynamic range by utilizing asynchronous pixel operation and logarithmic photocurrent conversion, making them highly effective for celestial imaging. We use 1300 mm terrestrial telescope to demonstrate the neuromorphic camera's ability to simultaneously capture faint and bright celestial sources while preventing saturation effects. We illustrate its photometric capabilities through aperture photometry of a star field with faint stars. Detection of the faint gas cloud structure of the Trapezium cluster during a full moon night highlights the camera's high dynamic range, effectively mitigating static glare from lunar illumination. Our investigations also include detecting meteorite passing near the Moon and Earth, as well as imaging satellites and anthropogenic debris with exceptionally high temporal resolution using a 200mm telescope. Our observations show the immense potential of neuromorphic cameras in advancing astronomical optical imaging and pushing the boundaries of observational astronomy.