Real-world sensing challenges such as sensor failures, communication issues, and power constraints lead to data intermittency. An issue that is known to undermine the traditional classification task that assumes a continuous data stream. Previous works addressed this issue by designing bespoke solutions (i.e. task-specific and/or modality-specific imputation). These approaches, while effective for their intended purposes, had limitations in their applicability across different tasks and sensor modalities. This raises an important question: Can we build a task-agnostic imputation pipeline that is transferable to new sensors without requiring additional training? In this work, we formalise the concept of zero-shot imputation and propose a novel approach that enables the adaptation of pre-trained models to handle data intermittency. This framework, named NeuralPrefix, is a generative neural component that precedes a task model during inference, filling in gaps caused by data intermittency. NeuralPrefix is built as a continuous dynamical system, where its internal state can be estimated at any point in time by solving an Ordinary Differential Equation (ODE). This approach allows for a more versatile and adaptable imputation method, overcoming the limitations of task-specific and modality-specific solutions. We conduct a comprehensive evaluation of NeuralPrefix on multiple sensory datasets, demonstrating its effectiveness across various domains. When tested on intermittent data with a high 50% missing data rate, NeuralPreifx accurately recovers all the missing samples, achieving SSIM score between 0.93-0.96. Zero-shot evaluations show that NeuralPrefix generalises well to unseen datasets, even when the measurements come from a different modality.