This paper examines the relationship between the behavior of a neural network and the distribution formed from the projections of the data records into the space spanned by the low-order principal components of the training data. For example, in a benchmark calculation involving rotated and unrotated MNIST digits, classes (digits) that are mapped far from the origin in a low-dimensional principal component space and that overlap minimally with other digits converge rapidly and exhibit high degrees of accuracy in neural network calculations that employ the associated components of each data record as inputs. Further, if the space spanned by these low-order principal components is divided into bins and the input data records that are mapped into a given bin averaged, the resulting pattern can be distinguished by its geometric features which interpolate between those of adjacent bins in an analogous manner to variational autoencoders. Based on this observation, a simply realized data balancing procedure can be realized by evaluating the entropy associated with each histogram bin and subsequently repeating the original image data associated with the bin by a number of times that is determined from this entropy.