Can a generic (Python) program be executed statement-by-statement by neural networks composed according to the source code? We formulate the Abstract Neural Execution Problem and introduce Neural Interpretation, the first neural model that abstractly executes generic source code, where every variable has a vector encoding, and every function executes a neural network. Neural Interpretation is a model of computers with a compiler architecture, which can assemble neural layers ''programmed'' by partial source code. Neural Interpretation can be trained with flexible learning objectives. We demonstrate white-box execution without concrete inputs for variable misuse localization and repair.