In the dynamic landscape of online businesses, recommender systems are pivotal in enhancing user experiences. While traditional approaches have relied on static supervised learning, the quest for adaptive, user-centric recommendations has led to the emergence of the formulation of contextual bandits. This tutorial investigates the contextual bandits as a powerful framework for personalized recommendations. We delve into the challenges, advanced algorithms and theories, collaborative strategies, and open challenges and future prospects within this field. Different from existing related tutorials, (1) we focus on the exploration perspective of contextual bandits to alleviate the ``Matthew Effect'' in the recommender systems, i.e., the rich get richer and the poor get poorer, concerning the popularity of items; (2) in addition to the conventional linear contextual bandits, we will also dedicated to neural contextual bandits which have emerged as an important branch in recent years, to investigate how neural networks benefit contextual bandits for personalized recommendation both empirically and theoretically; (3) we will cover the latest topic, collaborative neural contextual bandits, to incorporate both user heterogeneity and user correlations customized for recommender system; (4) we will provide and discuss the new emerging challenges and open questions for neural contextual bandits with applications in the personalized recommendation, especially for large neural models.