Web crawling, snowball sampling, and respondent-driven sampling (RDS) are three types of network sampling techniques used to contact individuals in hard-to-reach populations. This paper studies these procedures as a Markov process on the social network that is indexed by a tree. Each node in this tree corresponds to an observation and each edge in the tree corresponds to a referral. Indexing with a tree (instead of a chain) allows for the sampled units to refer multiple future units into the sample. In survey sampling, the design effect characterizes the additional variance induced by a novel sampling strategy. If the design effect is some value $DE$, then constructing an estimator from the novel design makes the variance of the estimator $DE$ times greater than it would be under a simple random sample with the same sample size $n$. Under certain assumptions on the referral tree, the design effect of network sampling has a critical threshold that is a function of the referral rate $m$ and the clustering structure in the social network, represented by the second eigenvalue of the Markov transition matrix, $\lambda_2$. If $m < 1/\lambda_2^2$, then the design effect is finite (i.e. the standard estimator is $\sqrt{n}$-consistent). However, if $m > 1/\lambda_2^2$, then the design effect grows with $n$ (i.e. the standard estimator is no longer $\sqrt{n}$-consistent). Past this critical threshold, the standard error of the estimator converges at the slower rate of $n^{\log_m \lambda_2}$. The Markov model allows for nodes to be resampled; computational results show that the findings hold in without-replacement sampling. To estimate confidence intervals that adapt to the correct level of uncertainty, a novel resampling procedure is proposed. Computational experiments compare this procedure to previous techniques.