Nearest Neighbor Search (NNS) is a central task in knowledge representation, learning, and reasoning. There is vast literature on efficient algorithms for constructing data structures and performing exact and approximate NNS. This paper studies NNS under Uncertainty (NNSU). Specifically, consider the setting in which an NNS algorithm has access only to a stochastic distance oracle that provides a noisy, unbiased estimate of the distance between any pair of points, rather than the exact distance. This models many situations of practical importance, including NNS based on human similarity judgements, physical measurements, or fast, randomized approximations to exact distances. A naive approach to NNSU could employ any standard NNS algorithm and repeatedly query and average results from the stochastic oracle (to reduce noise) whenever it needs a pairwise distance. The problem is that a sufficient number of repeated queries is unknown in advance; e.g., a point maybe distant from all but one other point (crude distance estimates suffice) or it may be close to a large number of other points (accurate estimates are necessary). This paper shows how ideas from cover trees and multi-armed bandits can be leveraged to develop an NNSU algorithm that has optimal dependence on the dataset size and the (unknown)geometry of the dataset.