Existing state-of-the-art techniques in exemplar-based image-to-image translation have several critical problems. Existing method related to exemplar-based image-to-image translation is impossible to translate on an image tuple input(source, target) that is not aligned. Also, we can confirm that the existing method has limited generalization ability to unseen images. To overcome this limitation, we propose Multiple GAN Inversion for Exemplar-based Image-to-Image Translation. Our novel Multiple GAN Inversion avoids human intervention using a self-deciding algorithm in choosing the number of layers using Fr\'echet Inception Distance(FID), which selects more plausible image reconstruction result among multiple hypotheses without any training or supervision. Experimental results shows the advantage of the proposed method compared to existing state-of-the-art exemplar-based image-to-image translation methods.