Unlearning methods for recommender systems (RS) have emerged to address privacy issues and concerns about legal compliance. However, evolving user preferences and content licensing issues still remain unaddressed. This is particularly true in case of multi-modal recommender systems (MMRS), which aim to accommodate the growing influence of multi-modal information on user preferences. Previous unlearning methods for RS are inapplicable to MMRS due to incompatibility of multi-modal user-item behavior data graph with the matrix based representation of RS. Partitioning based methods degrade recommendation performance and incur significant overhead costs during aggregation. This paper introduces MMRecUN, a new framework for multi-modal recommendation unlearning, which, to the best of our knowledge, is the first attempt in this direction. Given the trained recommendation model and marked forget data, we devise Reverse Bayesian Personalized Ranking (BPR) objective to force the model to forget it. MMRecUN employs both reverse and forward BPR loss mechanisms to selectively attenuate the impact of interactions within the forget set while concurrently reinforcing the significance of interactions within the retain set. Our experiments demonstrate that MMRecUN outperforms baseline methods across various unlearning requests when evaluated on benchmark multi-modal recommender datasets. MMRecUN achieves recall performance improvements of up to $\mathbf{49.85%}$ compared to the baseline methods. It is up to $\mathbf{1.3}\times$ faster than the \textsc{Gold} model, which is trained on retain data from scratch. MMRecUN offers advantages such as superior performance in removing target elements, preservation of performance for retained elements, and zero overhead costs in comparison to previous methods.