Deep learning-based surrogate models have been widely applied in geological carbon storage (GCS) problems to accelerate the prediction of reservoir pressure and CO2 plume migration. Large amounts of data from physics-based numerical simulators are required to train a model to accurately predict the complex physical behaviors associated with this process. In practice, the available training data are always limited in large-scale 3D problems due to the high computational cost. Therefore, we propose to use a multi-fidelity Fourier Neural Operator to solve large-scale GCS problems with more affordable multi-fidelity training datasets. The Fourier Neural Operator has a desirable grid-invariant property, which simplifies the transfer learning procedure between datasets with different discretization. We first test the model efficacy on a GCS reservoir model being discretized into 110k grid cells. The multi-fidelity model can predict with accuracy comparable to a high-fidelity model trained with the same amount of high-fidelity data with 81% less data generation costs. We further test the generalizability of the multi-fidelity model on a same reservoir model with a finer discretization of 1 million grid cells. This case was made more challenging by employing high-fidelity and low-fidelity datasets generated by different geostatistical models and reservoir simulators. We observe that the multi-fidelity FNO model can predict pressure fields with reasonable accuracy even when the high-fidelity data are extremely limited.