This paper presents an open-source framework for collecting time series S-parameter measurements across multiple antenna elements, dubbed MPADA: Multi-Port Antenna Data Acquisition. The core of MPADA relies on the standard SCPI protocol to be compatible with a wide range of hardware platforms. Time series measurements are enabled through the use of a high-precision real-time clock (RTC), allowing MPADA to periodically trigger the VNA and simultaneously acquire other sensor data for synchronized cross-modal data fusion. A web-based user interface has been developed to offer flexibility in instrumentation, visualization, and analysis. The interface is accessible from a broad range of devices, including mobile ones. Experiments are performed to validate the reliability and accuracy of the data collected using the proposed framework. First, we show the framework's capacity to collect highly repeatable measurements from a complex measurement protocol using a microwave tomography imaging system. The data collected from a test phantom attain high fidelity where a position-varying clutter is visible through coherent subtraction. Second, we demonstrate timestamp accuracy for collecting time series motion data jointly from an RF kinematic sensor and an angle sensor. We achieved an average of 11.8 ms MSE timestamp accuracy at a mixed sampling rate of 10 to 20 Hz over a total of 16-minute test data. We make the framework openly available to benefit the antenna measurement community, providing researchers and engineers with a versatile tool for research and instrumentation. Additionally, we offer a potential education tool to engage engineering students in the subject, fostering hands-on learning through remote experimentation.