In this paper, we propose an integrated sensing and communication (ISAC) system aided by the movable-antenna (MA) array, which can improve the communication and sensing performance via flexible antenna movement over conventional fixed-position antenna (FPA) array. First, we consider the downlink multiuser communication, where each user is randomly distributed within a given three-dimensional zone with local movement. To reduce the overhead of frequent antenna movement, the antenna position vector (APV) is designed based on users' statistical channel state information (CSI), so that the antennas only need to be moved in a large timescale. Then, for target sensing, the Cramer-Rao bounds (CRBs) of the estimation mean square error for different spatial angles of arrival (AoAs) are derived as functions of MAs' positions. Based on the above, we formulate an optimization problem to maximize the expected minimum achievable rate among all communication users, with given constraints on the maximum acceptable CRB thresholds for target sensing. An alternating optimization algorithm is proposed to iteratively optimize one of the horizontal and vertical APVs of the MA array with the other being fixed. Numerical results demonstrate that our proposed MA arrays can significantly enlarge the trade-off region between communication and sensing performance compared to conventional FPA arrays with different inter-antenna spacing. It is also revealed that the steering vectors of the designed MA arrays exhibit low correlation in the angular domain, thus effectively reducing channel correlation among communication users to enhance their achievable rates, while alleviating ambiguity in target angle estimation to achieve improved sensing accuracy.