convergence.In addition to the analytic guarantees, the simulation study verifies the effectiveness of the proposed methodology in a workspace with non-trivial polygonal obstacles.
This work proposes a novel transformation termed the conformal navigation transformation to achieve collision-free navigation of a robot in a workspace populated with arbitrary polygonal obstacles. The properties of the conformal navigation transformation in the polygonal workspace are investigated in this work as well as its capability to provide a solution to the navigation problem. %The properties of the conformal navigation transformation are investigated, which contribute to the solution of the robot navigation problem in complex polygonal environments. %which facilitates the navigation of robots in complex environments. The definition of the navigation function is generalized to accommodate non-smooth obstacle boundaries. Based on the proposed transformation and the generalized navigation function, a provably correct feedback controller is derived for the automatic guidance and motion control of the kinematic mobile robot. Moreover, an iterative method is proposed to construct the conformal navigation transformation in a multi-connected polygonal workspace, which transforms the multi-connected problem into multiple single-connected problems to achieve fast