The LASSO is a recent technique for variable selection in the regression model \bean y & = & X\beta +\epsilon, \eean where $X\in \R^{n\times p}$ and $\epsilon$ is a centered gaussian i.i.d. noise vector $\mathcal N(0,\sigma^2I)$. The LASSO has been proved to perform exact support recovery for regression vectors when the design matrix satisfies certain algebraic conditions and $\beta$ is sufficiently sparse. Estimation of the vector $X\beta$ has also extensively been studied for the purpose of prediction under the same algebraic conditions on $X$ and under sufficient sparsity of $\beta$. Among many other, the coherence is an index which can be used to study these nice properties of the LASSO. More precisely, a small coherence implies that most sparse vectors, with less nonzero components than the order $n/\log(p)$, can be recovered with high probability if its nonzero components are larger than the order $\sigma \sqrt{\log(p)}$. However, many matrices occuring in practice do not have a small coherence and thus, most results which have appeared in the litterature cannot be applied. The goal of this paper is to study a model for which precise results can be obtained. In the proposed model, the columns of the design matrix are drawn from a Gaussian mixture model and the coherence condition is imposed on the much smaller matrix whose columns are the mixture's centers, instead of on $X$ itself. Our main theorem states that $X\beta$ is as well estimated as in the case of small coherence up to a correction parametrized by the maximal variance in the mixture model.