Instance segmentation, a cornerstone task in computer vision, has wide-ranging applications in diverse industries. The advent of deep learning and artificial intelligence has underscored the criticality of training effective models, particularly in data-scarce scenarios - a concern that resonates in both academic and industrial circles. A significant impediment in this domain is the resource-intensive nature of procuring high-quality, annotated data for instance segmentation, a hurdle that amplifies the challenge of developing robust models under resource constraints. In this context, the strategic integration of a visual prior into the training dataset emerges as a potential solution to enhance congruity with the testing data distribution, consequently reducing the dependency on computational resources and the need for highly complex models. However, effectively embedding a visual prior into the learning process remains a complex endeavor. Addressing this challenge, we introduce the MISS (Memory-efficient Instance Segmentation System) framework. MISS leverages visual inductive prior flow propagation, integrating intrinsic prior knowledge from the Synergy-basketball dataset at various stages: data preprocessing, augmentation, training, and inference. Our empirical evaluations underscore the efficacy of MISS, demonstrating commendable performance in scenarios characterized by limited data availability and memory constraints.