Defending large language models (LLMs) against jailbreak attacks is crucial for ensuring their safe deployment. Existing defense strategies generally rely on predefined static criteria to differentiate between harmful and benign prompts. However, such rigid rules are incapable of accommodating the inherent complexity and dynamic nature of real jailbreak attacks. In this paper, we propose a novel concept of ``mirror'' to enable dynamic and adaptive defense. A mirror refers to a dynamically generated prompt that mirrors the syntactic structure of the input while ensuring semantic safety. The personalized discrepancies between the input prompts and their corresponding mirrors serve as the guiding principles for defense. A new defense paradigm, MirrorGuard, is further proposed to detect and calibrate risky inputs based on such mirrors. An entropy-based detection metric, Relative Input Uncertainty (RIU), is integrated into MirrorGuard to quantify the discrepancies between input prompts and mirrors. MirrorGuard is evaluated on several popular datasets, demonstrating state-of-the-art defense performance while maintaining general effectiveness.